If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=(5+F)(F-4)
We move all terms to the left:
(F)-((5+F)(F-4))=0
We add all the numbers together, and all the variables
F-((F+5)(F-4))=0
We multiply parentheses ..
-((+F^2-4F+5F-20))+F=0
We calculate terms in parentheses: -((+F^2-4F+5F-20)), so:We add all the numbers together, and all the variables
(+F^2-4F+5F-20)
We get rid of parentheses
F^2-4F+5F-20
We add all the numbers together, and all the variables
F^2+F-20
Back to the equation:
-(F^2+F-20)
F-(F^2+F-20)=0
We get rid of parentheses
-F^2+F-F+20=0
We add all the numbers together, and all the variables
-1F^2+20=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $
| X-y=35/78;X/y=9/2 | | b/7+1/4=11 | | 6+4(d)=d-9 | | 6+2x-6=3x-5 | | -5x-(-10)=-4x | | Y=x-(5.2-x) | | 8(4b-4)=128 | | 2z+3-10=-3 | | 5x-4*3=3x+8 | | 12x^2+7x+13=0 | | 14-y=6y-(4y+1) | | -6+4(2x+3)=18 | | 0=3x^2-16x+16 | | 12x/5-2=0 | | 5x-4=3x+8*3 | | 4/7x+5/14=39 | | 6+4•d=d-9 | | 3x=9=0 | | 3x-6(-2x-19)=249 | | 9/2+2m/5=59/10 | | 8c+4=-5c-9 | | z+3(z-1)=1 | | 2=2/m−7 | | 5x2+10=0 | | 5(2x+6)=−4(−5−2x)+3x | | -2n+7=7(1-4n) | | 50=2x-4(2x-5) | | 10^2x=52 | | 6y+7=6y-3 | | 281=119-y | | 6x-5=7+,2x | | -8x+57=161 |