F(x)=(50,000-2,500x)(15+x)

Simple and best practice solution for F(x)=(50,000-2,500x)(15+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(50,000-2,500x)(15+x) equation:



(F)=(50.000-2.500F)(15+F)
We move all terms to the left:
(F)-((50.000-2.500F)(15+F))=0
We add all the numbers together, and all the variables
F-((-2.5F+50)(F+15))=0
We multiply parentheses ..
-((-2F^2-30F+50F+750))+F=0
We calculate terms in parentheses: -((-2F^2-30F+50F+750)), so:
(-2F^2-30F+50F+750)
We get rid of parentheses
-2F^2-30F+50F+750
We add all the numbers together, and all the variables
-2F^2+20F+750
Back to the equation:
-(-2F^2+20F+750)
We get rid of parentheses
2F^2-20F+F-750=0
We add all the numbers together, and all the variables
2F^2-19F-750=0
a = 2; b = -19; c = -750;
Δ = b2-4ac
Δ = -192-4·2·(-750)
Δ = 6361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{6361}}{2*2}=\frac{19-\sqrt{6361}}{4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{6361}}{2*2}=\frac{19+\sqrt{6361}}{4} $

See similar equations:

| 2x=(x+9) | | (87-2x)=(14x+21) | | (14x+21)=(87-2x) | | -2+x/2=10 | | 22x–33=10x+10+5 | | .5x-1=-2x+5 | | F+-9=-q | | 12n-5=4n=35 | | 2x+81=2-16x | | X+7x4=35 | | 3.4b-1.9=8.98 | | -7x+24=5x–12 | | -9d-4d-9d+9=13 | | -31=-x/9 | | 00((1)/(2))^(x)=200 | | 21=u/5-8 | | 4+3(m+2)=14 | | -20x+23=98 | | -20x+23=99 | | -20x+23=97 | | -20x+23=96 | | -20x+23=95 | | 2/3(1+n=-1/2 | | F(x)=-x^2+7x-4 | | x+(1/3x+8)=-36 | | 17s+3s+2s-4s=7 | | d²+3d-7=0 | | 0.25x+45=0.35x+35 | | 5+3y+11-2y=27 | | 0.25x+45=0.35+35 | | -3=1/6(12x+6) | | 0.4x-16=-6-0.85x |

Equations solver categories