F(x)=(x+5)(x-2)

Simple and best practice solution for F(x)=(x+5)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x+5)(x-2) equation:



(F)=(F+5)(F-2)
We move all terms to the left:
(F)-((F+5)(F-2))=0
We multiply parentheses ..
-((+F^2-2F+5F-10))+F=0
We calculate terms in parentheses: -((+F^2-2F+5F-10)), so:
(+F^2-2F+5F-10)
We get rid of parentheses
F^2-2F+5F-10
We add all the numbers together, and all the variables
F^2+3F-10
Back to the equation:
-(F^2+3F-10)
We add all the numbers together, and all the variables
F-(F^2+3F-10)=0
We get rid of parentheses
-F^2+F-3F+10=0
We add all the numbers together, and all the variables
-1F^2-2F+10=0
a = -1; b = -2; c = +10;
Δ = b2-4ac
Δ = -22-4·(-1)·10
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{11}}{2*-1}=\frac{2-2\sqrt{11}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{11}}{2*-1}=\frac{2+2\sqrt{11}}{-2} $

See similar equations:

| 7m-231-24m-222=42 | | m/40=275 | | 5+3a=4 | | y18=6 | | n4+7=10 | | 14.2/w=35.5 | | 20x-177=720 | | x+2M=7|2 | | F(x)=29+x+x^2 | | 90-36=54/3x | | -2y=9=3 | | 4=2^2-n | | 17,000,000(0.20)=108t | | 14.2/w=35.5100 | | 30x+177=720 | | x2-4,225=0 | | Y=0.15x+3 | | 30x-177=720 | | 7+2(a–3)=-9 | | 2.4x+3.5=19.7 | | 2×p=38 | | v+5.86=9.59 | | 100=y/25 | | 2b-29+2b+33=180 | | 3w-6+5w-9+7w=180 | | 8−2x=30 | | 180=(3x+10)+(7x+70) | | 43x+402=1080 | | 8b+2b+10=180 | | 4x+11+6x-11=115 | | 331=6+7b | | 5y-14+30+34=180 |

Equations solver categories