F(x)=(x-5)(5x+2)

Simple and best practice solution for F(x)=(x-5)(5x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x-5)(5x+2) equation:



(F)=(F-5)(5F+2)
We move all terms to the left:
(F)-((F-5)(5F+2))=0
We multiply parentheses ..
-((+5F^2+2F-25F-10))+F=0
We calculate terms in parentheses: -((+5F^2+2F-25F-10)), so:
(+5F^2+2F-25F-10)
We get rid of parentheses
5F^2+2F-25F-10
We add all the numbers together, and all the variables
5F^2-23F-10
Back to the equation:
-(5F^2-23F-10)
We add all the numbers together, and all the variables
F-(5F^2-23F-10)=0
We get rid of parentheses
-5F^2+F+23F+10=0
We add all the numbers together, and all the variables
-5F^2+24F+10=0
a = -5; b = 24; c = +10;
Δ = b2-4ac
Δ = 242-4·(-5)·10
Δ = 776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{776}=\sqrt{4*194}=\sqrt{4}*\sqrt{194}=2\sqrt{194}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{194}}{2*-5}=\frac{-24-2\sqrt{194}}{-10} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{194}}{2*-5}=\frac{-24+2\sqrt{194}}{-10} $

See similar equations:

| x3+2x+-33=0 | | -23+x=x+18 | | 2y=4÷5+9 | | 3+8n-2=9n+43-7n | | -12=-1x/5 | | 7n-4=-2n+9n-5 | | -7h+3(4-6h)=137 | | 23x-85=191$ | | 3m-2(3m-8)=8-(m+4 | | -12=-1/5x | | 5k-7=-6k-29 | | -4x=20-(-4 | | 2.8-6x=0.7+x | | 1+2t-2-t+3+3t=0 | | 2n+10=4n | | 10x-31=180 | | 6y+22=4y+42 | | 2x/2=2/5 | | 60=3.5g | | 0.1725x^2-0.21x+0.9=0 | | x-12=2x-32 | | 2(x+5)+25=140 | | 32=17=x | | -36=x(-16) | | 2-2a=-8 | | 9=0.3d | | 4n+5=95 | | 10-3x=-5x+6 | | 3+5-x=-x=-7 | | 100=6c+4c | | 6c+4c=100 | | 45=x-20= |

Equations solver categories