F(x)=-3(x+1)(x-5)

Simple and best practice solution for F(x)=-3(x+1)(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-3(x+1)(x-5) equation:



(F)=-3(F+1)(F-5)
We move all terms to the left:
(F)-(-3(F+1)(F-5))=0
We multiply parentheses ..
-(-3(+F^2-5F+F-5))+F=0
We calculate terms in parentheses: -(-3(+F^2-5F+F-5)), so:
-3(+F^2-5F+F-5)
We multiply parentheses
-3F^2+15F-3F+15
We add all the numbers together, and all the variables
-3F^2+12F+15
Back to the equation:
-(-3F^2+12F+15)
We get rid of parentheses
3F^2-12F+F-15=0
We add all the numbers together, and all the variables
3F^2-11F-15=0
a = 3; b = -11; c = -15;
Δ = b2-4ac
Δ = -112-4·3·(-15)
Δ = 301
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{301}}{2*3}=\frac{11-\sqrt{301}}{6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{301}}{2*3}=\frac{11+\sqrt{301}}{6} $

See similar equations:

| 36=4s+14 | | -2(2x–4)=3(x+12) | | F(x)=2(x-3)(3-9) | | 22+8a=7(a+3)-4 | | 3(2x-1)+5(x-4)=38 | | 4w+4.4=17.6 | | 3(y+3)=2(y+2) | | 195e-65.00=52.85 | | -2.5=3.5x=1.5x+16 | | y-49+y-16=y+42 | | v+16+v+7=v+50 | | 5p+4=-20 | | x-18+x+17=x+50 | | z+z=z+44 | | 4x+15-2x=0 | | w-37+w-27=w+37 | | 3x+13.5=27-1.5× | | s-50+s-50=s | | p+14+p+12=p+49 | | P+12+p+14=p+49 | | 4x9=6x= | | 50=10+2(p+5) | | 0.6x-5=0.1x=+7 | | 3(b-4)+56=44 | | a+a+12=32 | | 345-5f=300 | | 3=x-8/5 | | ((3x-4)^2)^0.5+5x-12=0 | | 10y-3=10 | | 8-5n=4-7n | | 8x^2+64+120=0 | | |3x-4|+5x-12=0 |

Equations solver categories