If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=-6F^2
We move all terms to the left:
(F)-(-6F^2)=0
We get rid of parentheses
6F^2+F=0
a = 6; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·6·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*6}=\frac{-2}{12} =-1/6 $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*6}=\frac{0}{12} =0 $
| (84-x)/5=90 | | 10(21)-61=18y+5 | | 6w+5.8=-0.4 | | 7(7x-2)=27 | | 1/2x+5=25 | | 3x9=9 | | 3/8+-4=-72a | | x^2-45=180 | | 2x+17=4x-1=6x+9 | | -15+7y=69 | | (2x-1)(x+1)=180 | | 3x{(10-3)+8/4}=0 | | 2(x+3)=(6-x)+7 | | (2x-1)(x+1)=90 | | ∠A=8x−10=∠B=3x+90 | | 7x-9•2=5x-2 | | 9+4r=-27 | | t^2=2t-1+0 | | −x=3−4x+15 | | 3x{(10-3=)+8 | | n^2+84*n=100 | | -5+-n=-23 | | n^2+84*n=81 | | n^2+84*n=64 | | .4n+6=-7 | | X-186+13x=80 | | 5/4=y+3/6 | | n^2+84*n=49 | | 26=n+10 | | -(3m-1)-8=-8+4(5m+6) | | n^2+84*n=36 | | 2x-3(-2)=-10 |