F(x)=-9x-6+x(2x-5)

Simple and best practice solution for F(x)=-9x-6+x(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-9x-6+x(2x-5) equation:



(F)=-9F-6+F(2F-5)
We move all terms to the left:
(F)-(-9F-6+F(2F-5))=0
We calculate terms in parentheses: -(-9F-6+F(2F-5)), so:
-9F-6+F(2F-5)
determiningTheFunctionDomain -9F+F(2F-5)-6
We multiply parentheses
2F^2-9F-5F-6
We add all the numbers together, and all the variables
2F^2-14F-6
Back to the equation:
-(2F^2-14F-6)
We get rid of parentheses
-2F^2+F+14F+6=0
We add all the numbers together, and all the variables
-2F^2+15F+6=0
a = -2; b = 15; c = +6;
Δ = b2-4ac
Δ = 152-4·(-2)·6
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{273}}{2*-2}=\frac{-15-\sqrt{273}}{-4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{273}}{2*-2}=\frac{-15+\sqrt{273}}{-4} $

See similar equations:

| 10x-7=0.777 | | 13-42=3(x-3)-8 | | w-6.41=9.7 | | 49=7/3y | | 9x+4=−95 | | -28=7n+7(4+7n) | | -2(1+3n)=-n-7 | | 64^x+1=16^2x-3 | | 28+8k=-2(3k+7) | | 11x2–4x=1 | | 9^a+5=27^a-1 | | -172=6(7n+4)+7n | | (9b-4)-2(4b+1)=-5 | | 3(4+3n)=48 | | h-6.5=1.5 | | 7^3-y=7^2y+9 | | -6x^2+2x+60=40 | | -9(8d-2)=-19 | | 4+5n-6n=-3 | | 48=-6(-8x-8) | | 10=12m-8m | | x/4.2=33.6 | | 4x+3+2x=x+4+5x | | 5v+3/8=v-2/4+2 | | x-1/2=1/6 | | 38+16t^2-45t=0 | | (576/676)+(100/b^2)=1 | | 4^2x+1=16 | | 22=7(4x+8) | | 4u+6/7=2u-9/5+3 | | 5(x+10)=50+2x | | 26=x-17 |

Equations solver categories