F(x)=1/7x-9,x=21

Simple and best practice solution for F(x)=1/7x-9,x=21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=1/7x-9,x=21 equation:



(F)=1/7F-9.F=21
We move all terms to the left:
(F)-(1/7F-9.F)=0
Domain of the equation: 7F-9.F)!=0
F∈R
We add all the numbers together, and all the variables
F-(-9F+1/7F)=0
We get rid of parentheses
F+9F-1/7F=0
We multiply all the terms by the denominator
F*7F+9F*7F-1=0
Wy multiply elements
7F^2+63F^2-1=0
We add all the numbers together, and all the variables
70F^2-1=0
a = 70; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·70·(-1)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*70}=\frac{0-2\sqrt{70}}{140} =-\frac{2\sqrt{70}}{140} =-\frac{\sqrt{70}}{70} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*70}=\frac{0+2\sqrt{70}}{140} =\frac{2\sqrt{70}}{140} =\frac{\sqrt{70}}{70} $

See similar equations:

| 5×+1=×+21x= | | 16-3.5t=9 | | -5x+12-7x=-3(5x+8 | | -11x+7=95 | | 1*0,170=0,086*n*298 | | 1*0,170=0,086*n*273 | | 20=14u-9u | | 15x6=14x+5 | | 12-8n=3 | | a-6-2a=15+6a | | 1/2x+2/3x=5/6+2x | | 3x-8=-5x+7 | | -5+(p/15)=-4 | | 13x-98=110 | | 10+3f=8f–5 | | -11+6+7/3k=-4+6 | | 1000^x=100000 | | 4(z-2)=13-3z | | 98+13x=110 | | 2a+52=264 | | 15=n×75 | | 3x-4+4x+9=90 | | 2-9x=74 | | -9+42=-3(y+6) | | 5+6c=-3-6c+8 | | (2x+6)+(2x+5)+(2x)=(2x+22x)+(3x+5) | | 6q-6+14q-21=21 | | 4x-4=1000 | | 4x2+12x-720=0 | | 14-x+4x=3 | | 10-8x=-2X-2 | | 7x/6+2x=19 |

Equations solver categories