F(x)=2x-5x+4/x-2

Simple and best practice solution for F(x)=2x-5x+4/x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=2x-5x+4/x-2 equation:



(F)=2F-5F+4/F-2
We move all terms to the left:
(F)-(2F-5F+4/F-2)=0
Domain of the equation: F-2)!=0
F∈R
We add all the numbers together, and all the variables
F-(-3F+4/F-2)=0
We get rid of parentheses
F+3F-4/F+2=0
We multiply all the terms by the denominator
F*F+3F*F+2*F-4=0
We add all the numbers together, and all the variables
2F+F*F+3F*F-4=0
Wy multiply elements
F^2+3F^2+2F-4=0
We add all the numbers together, and all the variables
4F^2+2F-4=0
a = 4; b = 2; c = -4;
Δ = b2-4ac
Δ = 22-4·4·(-4)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{17}}{2*4}=\frac{-2-2\sqrt{17}}{8} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{17}}{2*4}=\frac{-2+2\sqrt{17}}{8} $

See similar equations:

| 2(x+8)-5x=10 | | -9=m+11/5 | | 3=1r+(-5) | | 1/7(a+6)=1/2(2-a) | | 5(2g-3)+8=9 | | 1/4(a+5)=1/2(6+a) | | 4x-40=0.8x+8 | | -3s+3=-9 | | 7g+9=3g-27 | | 8m=6=54 | | 32=6x-7*(-2) | | x^2-10x-59=0 | | -3x+9=3(x-3) | | 6x-5/2=2x+4 | | 7y-16=5 | | X^2+y=23 | | 0.51(5)=0.6(x) | | 5x^2-1=9 | | 3/5^b=-2 | | -3x=1/12 | | Y=(3x-5)(4×+4) | | -3/5l=11/2 | | D=15y | | 3t/42-t/6=1 | | 5-16x=4x-15 | | (x+5)(x-14)(x-15)=0 | | 8-3v=v | | x-15+75=180 | | x(8x-9)=90 | | (x+5)+x=62 | | 1/2x+7=2 | | 1/3+4x=3 |

Equations solver categories