Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
If it's not what You are looking for type in the field below your own integer, and You will get the solution.
By prime factorization of 105 we follow 5 simple steps:
1. We write number 105 above a 2-column table
2. We divide 105 by the smallest possible prime factor
3. We write down on the left side of the table the prime factor and next number to factorize on the ride side
4. We continue to factor in this fashion (we deal with odd numbers by trying small prime factors)
5. We continue until we reach 1 on the ride side of the table
105 | |
prime factors | number to factorize |
3 | 35 |
5 | 7 |
7 | 1 |
| Prime factorization of 390 | | Factors of 504 | | Prime factorization of 26 | | Factors of 13 | | Factors of 69 | | Prime factorization of 184 | | Factors of 440 | | Prime factorization of 880 | | Prime factorization of 200 | | Prime factorization of 4560 | | Factors of 2200 | | Factors of 204 | | Factors of 990 | | Prime factorization of 1050 | | Factors of 248 | | Prime factorization of 470 | | Factors of 720 | | Factors of 512 | | Factors of 929 | | Factors of 243 | | Factors of 119 | | Prime factorization of 88 | | Factors of 387 | | Factors of 1035 | | Prime factorization of 363 | | Factors of 244 | | Factors of 26 | | Factors of 320 | | Factors of 122 | | Prime factorization of 93 | | Factors of 207 | | Prime factorization of 235 |