G(-2)=-x2

Simple and best practice solution for G(-2)=-x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for G(-2)=-x2 equation:



(-2)=-G2
We move all terms to the left:
(-2)-(-G2)=0
We add all the numbers together, and all the variables
-(-1G^2)+(-2)=0
We add all the numbers together, and all the variables
-(-1G^2)-2=0
We get rid of parentheses
1G^2-2=0
We add all the numbers together, and all the variables
G^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $

See similar equations:

| 4(x^2-x+2)-5(x^2-2x+1)=0 | | 12+4f+5=41 | | -2q+2=-2q | | 8.4w−0.67=15.29 | | -7=(z/2)+1 | | v-3/4=-1/2 | | 16=4+4r+36 | | -2q+2=2q | | F=6(3.14)j | | 18x=21x | | Y=-x2-6x-5 | | -5p+10,000p=0 | | 25=5x+7 | | 3x2−3x+12=0 | | 12=6g+3-3g | | 3x+18+2x-2=59-3x+29 | | -1+a/3=-4 | | (X^2-3x-4)/(2x^2+x-1)=0 | | 4+2r=r+1 | | -4(6-8n)=40 | | 3x^2+63x=0 | | 2x+17=2x-2+4+x | | 7x-1=10x+30 | | 3m=-3+3m | | 2g-9+g=6 | | 2x^-9x+7=0 | | 3+9n=21n= | | 7x-1+58=10x+30 | | -3-4n=-4n-3 | | 2x+17=x+4+2x–2 | | -t/4=-3∏ | | -35+6a=64a-8 |

Equations solver categories