If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(0)=-16H^2+64H+100
We move all terms to the left:
(0)-(-16H^2+64H+100)=0
We add all the numbers together, and all the variables
-(-16H^2+64H+100)=0
We get rid of parentheses
16H^2-64H-100=0
a = 16; b = -64; c = -100;
Δ = b2-4ac
Δ = -642-4·16·(-100)
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{41}}{2*16}=\frac{64-16\sqrt{41}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{41}}{2*16}=\frac{64+16\sqrt{41}}{32} $
| j/4+(-8)=(-10) | | D+2d+3=12 | | 10=x/3.5 | | 6y+3(y-6)=20 | | -3(1x+1)=-24 | | 35+t=61 | | -8j-4j+18j=12 | | H(t)=-16t2+64t+100 | | v/7-(-26)=32 | | t∕8=3.2 | | 6q-20q-(-20)=-8 | | Xx21=45 | | x/20-1=0 | | 7x+14=315 | | 10y+2y-8y=20 | | 4^(x+2)-4^(x)=480 | | 49+(3x-5)+67=180 | | 5q+2=12 | | 14g-4g+3g+3g+4g=20 | | ?=x^2-18x-90 | | (3x)+36+90=180 | | 17+x=56 | | |3r−6|=21 | | 11n+4n-14n=3 | | 49/7=k | | 10h-4h+h-4h=15 | | x+25=41 | | 19q-17q-2q+2q=18 | | 39+90+(2x+13)=180 | | 26=12=n | | x^2−12x+32=4 | | 14v-12v+4v-2v=16 |