H(t)=(49+4.9t)(10-t)

Simple and best practice solution for H(t)=(49+4.9t)(10-t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=(49+4.9t)(10-t) equation:



(H)=(49+4.9H)(10-H)
We move all terms to the left:
(H)-((49+4.9H)(10-H))=0
We add all the numbers together, and all the variables
H-((4.9H+49)(-1H+10))=0
We multiply parentheses ..
-((-4H^2+40H-49H+490))+H=0
We calculate terms in parentheses: -((-4H^2+40H-49H+490)), so:
(-4H^2+40H-49H+490)
We get rid of parentheses
-4H^2+40H-49H+490
We add all the numbers together, and all the variables
-4H^2-9H+490
Back to the equation:
-(-4H^2-9H+490)
We get rid of parentheses
4H^2+9H+H-490=0
We add all the numbers together, and all the variables
4H^2+10H-490=0
a = 4; b = 10; c = -490;
Δ = b2-4ac
Δ = 102-4·4·(-490)
Δ = 7940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7940}=\sqrt{4*1985}=\sqrt{4}*\sqrt{1985}=2\sqrt{1985}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1985}}{2*4}=\frac{-10-2\sqrt{1985}}{8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1985}}{2*4}=\frac{-10+2\sqrt{1985}}{8} $

See similar equations:

| 3(2x-11)=2x-33 | | |-13+9|+1=x | | 3x+9+5x=105 | | -9t+2=56* | | (15^x^2)=110 | | b+24+2b+b=180 | | 3=d/7 | | X=y/(72y) | | 3x(2x+5)=—7 | | c+c-20+c-10=180 | | 15=8=z | | 2w^2+w+15=5 | | b+16+2b+b=180 | | 54=7n-2 | | -9=1.4c | | 7x+4=2x5–7 | | (2x+2)*10=(11+9)*9 | | 3(8-2x)+5=17-2(1-x) | | 700+k=1200 | | -9=z-23 | | (9x+4)(6x-4)=180 | | (8x+13x)*13x=(7+17)*17 | | (+27x^2-18x+12x-8)(3x-2)=180 | | 20j−18j=14 | | 15/6m+7=14 | | (9x+4)(3x-2)(3x-2)=180 | | (9x+4)(3x-2)=180 | | 4/7=m/28 | | F(x)=–x^2-7x-5 | | -14(d+3)=14 | | x=2/4(5x-4)=4x | | T=190+40w |

Equations solver categories