H(t)=-16t2+18t+120

Simple and best practice solution for H(t)=-16t2+18t+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t2+18t+120 equation:



(H)=-16H^2+18H+120
We move all terms to the left:
(H)-(-16H^2+18H+120)=0
We get rid of parentheses
16H^2-18H+H-120=0
We add all the numbers together, and all the variables
16H^2-17H-120=0
a = 16; b = -17; c = -120;
Δ = b2-4ac
Δ = -172-4·16·(-120)
Δ = 7969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{7969}}{2*16}=\frac{17-\sqrt{7969}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{7969}}{2*16}=\frac{17+\sqrt{7969}}{32} $

See similar equations:

| 7-3x=9x+10 | | 6x+30=4x-20 | | p/18=-16 | | x/2+12=-14 | | x+35+2x+50+2x=180 | | 3^(2x+2)+8.3^(x)–1=0 | | v-(-16)=12 | | 5x^2-4.33x+1=0 | | 42+-48v=-54 | | 11x-47=6x+3 | | 12+44x=100 | | (5500n)/3=3000 | | 2580+2920+n/3=3000 | | 175m-75m+58,200=60,00-200m | | 3.6g+4=1.6g+12 | | 0.25x/400=3 | | 25x+9=209=5x | | -x-8+6x=-8+5x | | 1+8x=33 | | v/2+3=-5 | | -0.42n=1.134 | | √(x+5)+√(x)=5 | | 4x^2-45x+100=0 | | 4(3x-2)=-(2-12x) | | -3(4m+8)=36 | | 5r=3(r+3)-7 | | 1.6=m4 | | 7x-1-6x=-17 | | 9x+9=7x+24 | | X2+40x=48 | | 0=x^2*x^2+5x^2+4 | | 4x+40=24x-10 |

Equations solver categories