H(t)=-16t2+64t+100

Simple and best practice solution for H(t)=-16t2+64t+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t2+64t+100 equation:



(H)=-16H^2+64H+100
We move all terms to the left:
(H)-(-16H^2+64H+100)=0
We get rid of parentheses
16H^2-64H+H-100=0
We add all the numbers together, and all the variables
16H^2-63H-100=0
a = 16; b = -63; c = -100;
Δ = b2-4ac
Δ = -632-4·16·(-100)
Δ = 10369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{10369}}{2*16}=\frac{63-\sqrt{10369}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{10369}}{2*16}=\frac{63+\sqrt{10369}}{32} $

See similar equations:

| v/7-(-26)=32 | | t∕8=3.2 | | 6q-20q-(-20)=-8 | | Xx21=45 | | x/20-1=0 | | 7x+14=315 | | 10y+2y-8y=20 | | 4^(x+2)-4^(x)=480 | | 49+(3x-5)+67=180 | | 5q+2=12 | | 14g-4g+3g+3g+4g=20 | | ?=x^2-18x-90 | | (3x)+36+90=180 | | 17+x=56 | | |3r−6|=21 | | 11n+4n-14n=3 | | 49/7=k | | 10h-4h+h-4h=15 | | x+25=41 | | 19q-17q-2q+2q=18 | | 39+90+(2x+13)=180 | | 26=12=n | | x^2−12x+32=4 | | 14v-12v+4v-2v=16 | | 33+(5x+13)+104=180 | | 17j-6j+3j-14j+4j=4 | | h2–6h–16=0 | | x+.10x=6128 | | -6x-14=23 | | -10+3x=-2+25 | | 3k-2k+2k=6 | | 30÷c=3 |

Equations solver categories