H(t)=480+16t-16t2

Simple and best practice solution for H(t)=480+16t-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=480+16t-16t2 equation:



(H)=480+16H-16H^2
We move all terms to the left:
(H)-(480+16H-16H^2)=0
We get rid of parentheses
16H^2-16H+H-480=0
We add all the numbers together, and all the variables
16H^2-15H-480=0
a = 16; b = -15; c = -480;
Δ = b2-4ac
Δ = -152-4·16·(-480)
Δ = 30945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{30945}}{2*16}=\frac{15-\sqrt{30945}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{30945}}{2*16}=\frac{15+\sqrt{30945}}{32} $

See similar equations:

| 4x+6+30=8+x | | .40=1/2•-9.8•t^2 | | .40=0•t+1/2•-9.8•t^2 | | 2x+10+2x+112+90+148=360 | | 4(4c-3(=2(5c=18) | | 3a-6=10 | | 7^(x+5)=-12 | | 23(6x-1)=33 | | 6t^2-13+6=0 | | 4(4c-3)=2(5c+18) | | 18+7x=12+4x | | 4x+40=27 | | (5x+6)(x-1)-(2x^-5x+3)=0 | | 5+b/6-4=7 | | (x+4)^2=75-x | | 4$c-3)=2(5c+18) | | -2(y-5)=+1 | | (x+4)2=75-x | | 10+2x=-x+25 | | p-14=-24 | | 2x+5x-36=76 | | -4x-2(2x+10)=-166 | | 25x2-36=0 | | 6b+2=-47 | | f/4+16=18 | | 5x+7=-14-8x | | -5(x+1)-x-12=-6(x+5)+13 | | f/4 + 16 = 18 | | 2{-9/2+m}=+3=4(m-3)+11/2 | | 14-9a=-88a | | (2x+5)=5/x+2(4x-6) | | 6+3n=6+2n |

Equations solver categories