H(x)=(2x)(2x+3)

Simple and best practice solution for H(x)=(2x)(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=(2x)(2x+3) equation:



(H)=(2H)(2H+3)
We move all terms to the left:
(H)-((2H)(2H+3))=0
We calculate terms in parentheses: -(2H(2H+3)), so:
2H(2H+3)
We multiply parentheses
4H^2+6H
Back to the equation:
-(4H^2+6H)
We get rid of parentheses
-4H^2+H-6H=0
We add all the numbers together, and all the variables
-4H^2-5H=0
a = -4; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-4)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-4}=\frac{0}{-8} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-4}=\frac{10}{-8} =-1+1/4 $

See similar equations:

| 3x+5=3x+20 | | 2x+12-4-6x=8.43 | | x=(x+119)-(13x+287)+81 | | 22-(-18)=n | | y+2-37=-8 | | 8x+15=9x-11 | | H=156-16t^2 | | x^2+36=105 | | -37+(-8)=n | | 9(x-9)-10=17x-139 | | x=81-(13x+287) | | 1/12(x-54)=1+x | | x=81-(13x+127) | | k1/2=3/4 | | (-6x+31)^1/2=x-4 | | 16-4xx=-4 | | 49+2x-6x=52 | | 2x^2+3x=900 | | x/5+5=-50 | | F(-2)=3x^2-7x+6 | | 140=9x-4 | | (-6x+31)^(1/2)=x-4 | | 2/3x=9/3 | | (N+5)(n-7)=0 | | 3x+1=3(2x+2) | | n/5+2=14 | | 0.5x-7=-8 | | 2b+8+-5b+3=-13+8b-5 | | 2x-3(-3)=-1 | | 0.5x-7=8 | | 8x+9=-5.7x-6 | | 7,848/w=36 |

Equations solver categories