If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+1450
We move all terms to the left:
-(-16H^2+1450)=0
We get rid of parentheses
16H^2-1450=0
a = 16; b = 0; c = -1450;
Δ = b2-4ac
Δ = 02-4·16·(-1450)
Δ = 92800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92800}=\sqrt{1600*58}=\sqrt{1600}*\sqrt{58}=40\sqrt{58}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{58}}{2*16}=\frac{0-40\sqrt{58}}{32} =-\frac{40\sqrt{58}}{32} =-\frac{5\sqrt{58}}{4} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{58}}{2*16}=\frac{0+40\sqrt{58}}{32} =\frac{40\sqrt{58}}{32} =\frac{5\sqrt{58}}{4} $
| (X+52)+3x)=180 | | 6(x+18)-14(x-4)=x+6 | | 2(5x)+2(3x7)=350 | | (5x)+(x-18)=180 | | (x^2+6x+9)^(3/4)-13=14 | | 5x+31+x=697 | | (5x)+(x+18)=180 | | 2(x-7)^2+12=120 | | 3/4(8x-16)=5x-3+x | | (3x)+(x+42)=90 | | 5x+7x=3x+6x-36= | | -14y=60 | | 9x-x2-14=0 | | (3x)+(x+42)=180 | | 6n+3=3+6n | | 3x+x=4x+24-6x= | | 3a÷8-5=12 | | 4x-40=-x | | 5a^2=10-9a | | x^2+20x+144^=0 | | 3a/8-5=12 | | 15=9(5k-3) | | 12(2x+11)=12(3x+12) | | 3-2x=84+7x | | (2x)+(x+96)=180 | | 2x2+34x144=0 | | Y^2+4y=247 | | -34=-2+9(y+7) | | 7x-3x=6x+14-4x= | | 21=-3z-7z | | 3^-7x=7 | | 1x+10=-20 |