H=-16t2+541

Simple and best practice solution for H=-16t2+541 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t2+541 equation:



=-16H^2+541
We move all terms to the left:
-(-16H^2+541)=0
We get rid of parentheses
16H^2-541=0
a = 16; b = 0; c = -541;
Δ = b2-4ac
Δ = 02-4·16·(-541)
Δ = 34624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34624}=\sqrt{64*541}=\sqrt{64}*\sqrt{541}=8\sqrt{541}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{541}}{2*16}=\frac{0-8\sqrt{541}}{32} =-\frac{8\sqrt{541}}{32} =-\frac{\sqrt{541}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{541}}{2*16}=\frac{0+8\sqrt{541}}{32} =\frac{8\sqrt{541}}{32} =\frac{\sqrt{541}}{4} $

See similar equations:

| 3/3.2=7.4/x | | 26+11y=180 | | 52=n+5 | | 2u^2-4=7u | | 5x-5=40x+2 | | 4(g+6)=5(g-12)-8 | | 4p+2/5(10+2p)=8 | | 13-(2c+2)=2(2c+2)+3c | | 3(t+1)-2t=4 | | 8x-4=-13 | | f(3)=14 | | 10+1/8x=12 | | -11/15x+4/5=1/3 | | 3(x+2)-7=11 | | y/43=11 | | 25n=175 | | n+82=171 | | n/15=23 | | n-118=209 | | 4x+3-4+10x=3-17 | | -4+9(6x-1)=(6x-1) | | -4+9(6x-1)=(50-9) | | -4+9(6x-1)=(54-13) | | 7x^2-18-3x=0 | | 3(x-3)=-126 | | 3b-4/6=b-3/12 | | -2/9y=8 | | -5x+24=-x-17 | | 3x+29=6x-7 | | 1000=200+50(z-70) | | 2x+27=5x-6 | | (6x-18)+(14x+38)=180 |

Equations solver categories