H=-16t2+80

Simple and best practice solution for H=-16t2+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t2+80 equation:



=-16H^2+80
We move all terms to the left:
-(-16H^2+80)=0
We get rid of parentheses
16H^2-80=0
a = 16; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·16·(-80)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{5}}{2*16}=\frac{0-32\sqrt{5}}{32} =-\frac{32\sqrt{5}}{32} =-\sqrt{5} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{5}}{2*16}=\frac{0+32\sqrt{5}}{32} =\frac{32\sqrt{5}}{32} =\sqrt{5} $

See similar equations:

| -12/k=6 | | 145+90+x=180 | | 9.5=25/t+(-8) | | 18+3x=4(−x+8)−42 | | -6u+40-6u=-8 | | 1.3+y/3=3.5 | | -1+x/2=-7 | | 9=(2p)/8 | | -9/8+9/8=c | | 〖5x〗^2-15x=0 | | -3/5v-1/2=2/3 | | 38-8x=3(-5x+8) | | 6.3+v=42 | | -2.66-(-4.98)=c | | -9v+7=-5(v-7) | | -x+1/2x=67/12+x+20/12-24/12 | | −6f+13=2f−11 | | -7/9w=-14 | | v+0.333333333333=12 | | 3+y=10.5 | | -9.3=d3.4 | | k/11=10 | | 101/2=c | | v+1/3=12 | | 27=9f | | 1/2+21x=39 | | 1/3x=13-x | | 5.5y=12 | | 1/2x+21=39 | | -3b-4(4+8b)=14-5b | | 7/4=56x | | -1.6(-7.1)=c |

Equations solver categories