H=-16t2+85

Simple and best practice solution for H=-16t2+85 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t2+85 equation:



=-16H^2+85
We move all terms to the left:
-(-16H^2+85)=0
We get rid of parentheses
16H^2-85=0
a = 16; b = 0; c = -85;
Δ = b2-4ac
Δ = 02-4·16·(-85)
Δ = 5440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5440}=\sqrt{64*85}=\sqrt{64}*\sqrt{85}=8\sqrt{85}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{85}}{2*16}=\frac{0-8\sqrt{85}}{32} =-\frac{8\sqrt{85}}{32} =-\frac{\sqrt{85}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{85}}{2*16}=\frac{0+8\sqrt{85}}{32} =\frac{8\sqrt{85}}{32} =\frac{\sqrt{85}}{4} $

See similar equations:

| -2+4g=-4+2g | | 4(y-7)=2(2y+41 | | 12q-4q=8q= | | 4(y-7)=3(2y+41 | | -10+4f=6f+4 | | 5x+21=2(+21) | | 7+2c=3c | | y=3.4(24)+11.1 | | -y=-4y+6 | | 3(3-7x)=-201 | | 7(4s+3)=357 | | q=10-4q | | -61=7x+2(-6x-8) | | 6(2l+6)=168 | | 2x2+9x=8 | | 3(m-1)=5(m+1) | | 3w=-8+4w | | 30x^2-19x-4=0 | | 3(-8+x)=-3 | | 3(n+3n)+7=22 | | 6/9x-5/9x=3 | | 25y=15y+70 | | 8x+1=6x+25 | | 3=-4x+79 | | 1/3(27x+18=4(3x-3) | | 59+81+3x-5+5x-8=360 | | X^2(x+1)=4(2x+3) | | 1/3(27x+18)=4(3x) | | 2(4z−9−7)=166−46 | | 8-x÷3=6 | | 8.2^n-3=42.5 | | 5+7x=4x-16 |

Equations solver categories