H=-5t2+100+1

Simple and best practice solution for H=-5t2+100+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-5t2+100+1 equation:



=-5H^2+100+1
We move all terms to the left:
-(-5H^2+100+1)=0
We get rid of parentheses
5H^2-100-1=0
We add all the numbers together, and all the variables
5H^2-101=0
a = 5; b = 0; c = -101;
Δ = b2-4ac
Δ = 02-4·5·(-101)
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{505}}{2*5}=\frac{0-2\sqrt{505}}{10} =-\frac{2\sqrt{505}}{10} =-\frac{\sqrt{505}}{5} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{505}}{2*5}=\frac{0+2\sqrt{505}}{10} =\frac{2\sqrt{505}}{10} =\frac{\sqrt{505}}{5} $

See similar equations:

| -8-12=4x | | 3x-4+7=2x-8 | | 54=14y-5y | | -16-56=8q | | 13-4/5y=-12 | | -3v-14=-v | | 437=361a+21 | | -76=4(n+7)-4(1-4n) | | 441a+21=441 | | -24-56=12m | | 19=1/2x | | 9p÷14+19=2p | | 9x+2=x-3 | | 2/3n+54=32 | | 3v+6v=-9 | | 1/2x+14=10 | | x=x/7=1/11(x+x/7)=60 | | 2/5m+32=42 | | -5b-b=-18 | | 11+3/4y=15 | | H=-1+12g | | P=-10x2+160x-588 | | 5(1=2m)=1/2(8+20m) | | 3x=7=5x-9 | | 4x-2(x+3)=12x+4 | | -203=-7(1-7b) | | (3x+7)(x+25)=0 | | 5-(2x+6)=7x-19 | | 1/3a—6=-15 | | 0.4rr=6 | | (x+6)(x−1)=x(x+3) | | 3x-49=45 |

Equations solver categories