If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16H^2+36H+10
We move all terms to the left:
-(16H^2+36H+10)=0
We get rid of parentheses
-16H^2-36H-10=0
a = -16; b = -36; c = -10;
Δ = b2-4ac
Δ = -362-4·(-16)·(-10)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{41}}{2*-16}=\frac{36-4\sqrt{41}}{-32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{41}}{2*-16}=\frac{36+4\sqrt{41}}{-32} $
| -10k+6=-4k-4 | | -2y+18=-36 | | -x÷14+9=13 | | 8-4(m-1)=-4m+6 | | (x-3)/(3x+1)=2 | | -3t+-27=15 | | -3x-8(7x-23)=7 | | 15(3x-7)=5x-3 | | -4(m-1)=-4m+6 | | 8s5=120 | | (x+1)/4=x+1 | | 4(5t-1)=3(2t+1) | | 3u+6=15 | | 13+6x=72 | | 8=n/3+4 | | 63=21+7y | | 1a+2a=6a | | 5n-2=6-n | | 6y+18=20 | | 5/9(-18-32)=c | | 8x+4=-2£ | | 66-2x=80-3x | | 15+6x=59 | | -5x+75=225 | | 3x-7(5-x)=10 | | (2x+6x2)=(4x+3)+2 | | 1/2f-2=16f | | 11=5–3x | | -4x–2=18 | | r3–16=-15 | | 4–x=7 | | √4z+9=z+1 |