H=3+75t-16(t*t)

Simple and best practice solution for H=3+75t-16(t*t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=3+75t-16(t*t) equation:



=3+75H-16(H*H)
We move all terms to the left:
-(3+75H-16(H*H))=0
We add all the numbers together, and all the variables
-(3+75H-16(+H*H))=0
We calculate terms in parentheses: -(3+75H-16(+H*H)), so:
3+75H-16(+H*H)
determiningTheFunctionDomain 75H-16(+H*H)+3
We multiply parentheses
-16H^2+75H+3
Back to the equation:
-(-16H^2+75H+3)
We get rid of parentheses
16H^2-75H-3=0
a = 16; b = -75; c = -3;
Δ = b2-4ac
Δ = -752-4·16·(-3)
Δ = 5817
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-\sqrt{5817}}{2*16}=\frac{75-\sqrt{5817}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+\sqrt{5817}}{2*16}=\frac{75+\sqrt{5817}}{32} $

See similar equations:

| 71.00=120.00(15.00+x+7.50 | | 4x+3(2x-4)-5x=13 | | (x-5)^2=900 | | q-3=17 | | 2t+9=14 | | 30=5(6n+) | | 4(5x-2)=29x+3 | | 2z+18=2z-5 | | 8-6k=6(1+3k) | | x+32=3x+20 | | (x-5)¨2=900 | | 14z-1=-5z-9(-4z-15) | | 70+3y=115 | | j-15=-11 | | 36=7m-14 | | 4x+20=2x-4- | | a-19=50 | | -(x-5)^2+1225=325 | | 5x+8= 2x−19 | | 10f-10=) | | (1.5x+6.8=-5.2,6) | | -17-5(-8c+19)=-6(-12c-8) | | 110-8x=190-12x | | -8=5+x | | 9-3x=1+5 | | (1/3)x+(1/4)x+x=57 | | -4-7=3n | | 10f-1=0 | | 10=x/4+9 | | (6+2x)=15(2-4)=9 | | b/4+5=13 | | (6x)=x/5+2 |

Equations solver categories