H=40+54t+-16t2

Simple and best practice solution for H=40+54t+-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=40+54t+-16t2 equation:



=40+54H+-16H^2
We move all terms to the left:
-(40+54H+-16H^2)=0
We use the square of the difference formula
-(40+54H-16H^2)=0
We get rid of parentheses
16H^2-54H-40=0
a = 16; b = -54; c = -40;
Δ = b2-4ac
Δ = -542-4·16·(-40)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5476}=74$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-74}{2*16}=\frac{-20}{32} =-5/8 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+74}{2*16}=\frac{128}{32} =4 $

See similar equations:

| 2(1-x)=3(1-2x)+8 | | 4+b+(b/2)=13 | | -2x-18=61-2x)+4x | | 125.5^3x=1 | | 10/m=6/m-4 | | w-9.6=1.67 | | y–(-4)=20 | | 4(x-2)/2=2(x=5)/8 | | 25+1j=-3(j-7) | | 7b-14=6 | | 4y+5+y=3y-3 | | 2d+4=4d-8 | | x+43+x+12=1 | | -3y+9=-6(y-6) | | -20-7n=-4(6+2n) | | 1(3x+3)=15 | | x7+9=14 | | 7n-3n=-12+6n-4+8 | | 7(u-5)=2u-25 | | 7y-20=2y-10-7 | | (X^2+380)+x=800 | | 5(4m+1)-2m=-31 | | 5x+2x+4+12+5=25+26 | | -4a-23=-4(a+6)+1 | | -2(-5-v)+8(v-8=-2v-6v | | -(y-9)=3y+17 | | 3b+6=2b+9 | | 4(2a-1)=-3(2a-1) | | x+56=3 | | 8(3w+6)/5=3 | | 8+2r=8 | | 6(5m−3)=1/3(24m+12)m= |

Equations solver categories