J(x)=-4/5x+7;(x)=-5

Simple and best practice solution for J(x)=-4/5x+7;(x)=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for J(x)=-4/5x+7;(x)=-5 equation:



(J)=-4/5J+7(J)=-5
We move all terms to the left:
(J)-(-4/5J+7(J))=0
Domain of the equation: 5J+7J)!=0
J∈R
We add all the numbers together, and all the variables
J-(+7J-4/5J)=0
We get rid of parentheses
J-7J+4/5J=0
We multiply all the terms by the denominator
J*5J-7J*5J+4=0
Wy multiply elements
5J^2-35J^2+4=0
We add all the numbers together, and all the variables
-30J^2+4=0
a = -30; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-30)·4
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*-30}=\frac{0-4\sqrt{30}}{-60} =-\frac{4\sqrt{30}}{-60} =-\frac{\sqrt{30}}{-15} $
$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*-30}=\frac{0+4\sqrt{30}}{-60} =\frac{4\sqrt{30}}{-60} =\frac{\sqrt{30}}{-15} $

See similar equations:

| -2r+63=-3 | | 9/7+7m/2=81/24 | | 105x=840 | | 1(1+7x)-6(-7-x=36 | | 72=6(f-83) | | A=9/4(h-53) | | 285=15b | | -14(y-2)=-28 | | 7(-5k+1)=-34+6k | | A=9/4(h-53 | | 3(5x+6)=2x-9 | | 2x+12+x=-12 | | -18=-16+b | | 8x-(3x+318)=287 | | 0.05x+5=0.25 | | 25+4t=97 | | 12x-6=9x+1+3x | | r/4=2.53 | | 4u+8=80 | | 85+5+9x=180 | | 4(-10b-2)=-128 | | 4x-1+7x=11x-1 | | 2(1-x)-(1-4x)=7 | | 8x–(3x+318)=287 | | -8(-7x+5=8(7x-5) | | 3x+32=13x+22 | | 6(n+4)-2n=32 | | 6-5x-14=-8x+9-2 | | 6x-2x-4=2(2x-7) | | -2(x^2-3)=x^2-42 | | 7(6k+2)=308 | | 4w-10=5+2w |

Equations solver categories