L(x)=400*(20-x)*(x-4)

Simple and best practice solution for L(x)=400*(20-x)*(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for L(x)=400*(20-x)*(x-4) equation:



(L)=400(20-L)(L-4)
We move all terms to the left:
(L)-(400(20-L)(L-4))=0
We add all the numbers together, and all the variables
L-(400(-1L+20)(L-4))=0
We multiply parentheses ..
-(400(-1L^2+4L+20L-80))+L=0
We calculate terms in parentheses: -(400(-1L^2+4L+20L-80)), so:
400(-1L^2+4L+20L-80)
We multiply parentheses
-400L^2+1600L+8000L-32000
We add all the numbers together, and all the variables
-400L^2+9600L-32000
Back to the equation:
-(-400L^2+9600L-32000)
We get rid of parentheses
400L^2-9600L+L+32000=0
We add all the numbers together, and all the variables
400L^2-9599L+32000=0
a = 400; b = -9599; c = +32000;
Δ = b2-4ac
Δ = -95992-4·400·32000
Δ = 40940801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$L_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$L_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$L_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9599)-\sqrt{40940801}}{2*400}=\frac{9599-\sqrt{40940801}}{800} $
$L_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9599)+\sqrt{40940801}}{2*400}=\frac{9599+\sqrt{40940801}}{800} $

See similar equations:

| 1/8y-4=-3 | | -8-2=-7y-8 | | (3x)2=x-1 | | 1.9k=11.97 | | 12=-2x+32 | | 1.2x=6.36 | | 12/6y-13=-1 | | (35+x)(25+x)=1750 | | 3x(2)=x-1 | | 3(5x+1)=2x-6x | | .33x=2x-15 | | 4t2+12t=0 | | 1/3x=2x-15 | | 5x-2=15x-2 | | 4y3=256 | | 14=21-x | | 10g+20=7g-10 | | 6x+32=14x-8 | | 44+x=20+3x | | (5/12)x+4/12=(6x-9)/12 | | 1/4-x+2/6+x=0 | | 3x+1+32=180 | | (6+x)+(8-2x)=0 | | 3+4x6(10-8)= | | X^3+7x=3480 | | (2/5)x=36 | | 2(-1/2k+2)=-4 | | -5d-3d+9=1 | | 1.5x+2=(2/3)x-8 | | -4g+6g+1=17 | | 1.5x+2=(2/3x)-8 | | 5(a-2)=2a+19 |

Equations solver categories