Logbase(x+1)64=3

Simple and best practice solution for Logbase(x+1)64=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Logbase(x+1)64=3 equation:


Simplifying
Logbase(x + 1) * 64 = 3

Reorder the terms:
abegosL(1 + x) * 64 = 3

Reorder the terms for easier multiplication:
64abegosL(1 + x) = 3
(1 * 64abegosL + x * 64abegosL) = 3
(64abegosL + 64abegosxL) = 3

Solving
64abegosL + 64abegosxL = 3

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Reorder the terms:
-3 + 64abegosL + 64abegosxL = 3 + -3

Combine like terms: 3 + -3 = 0
-3 + 64abegosL + 64abegosxL = 0

The solution to this equation could not be determined.

See similar equations:

| 5(2y-4)-2(3v+2)=-4 | | w-18=10 | | y=3x^5-3x+5 | | Pv=2nv-5p | | 1.5p=50 | | 4b=b+15 | | -7=-1-3p | | u+3=4u | | 5/6-13/30 | | f(x)=(x+4)(x-1)(x-1) | | 296+29=(x-24) | | 4x=-156 | | y+16=5y | | y=4x^3-2x^2-7x+3 | | f(x)=(x+1)(x+3)(x+3) | | 9=x(24) | | 2b^2-b-15=0 | | -5+-3x=2+3x | | -n^2+8n-20=0 | | 7b^2-47b+30=0 | | 2x+3(2x+3)=50+x | | 0=-0.005x^2+0.41x-5.1 | | 5x-4=2-x/2 | | (c-8)(-8)= | | Log(9)+7log(x)=2 | | 6(5x-3)=2(x+8) | | 5x+6+6x=6 | | 21=b/8 | | -5=-2p-(-6) | | 10=3f/2-f | | 10x+16x+6=180 | | x+6-6=0+6 |

Equations solver categories