If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(M2-2)=0
We add all the numbers together, and all the variables
(+M^2-2)=0
We get rid of parentheses
M^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| t-0.98=0.5 | | 40=2(4g-3)+14 | | -6+s=-13 | | 2x-93=33 | | 12(x+9)-4=51 | | 5f-2f=12 | | 8(x-1)4=4(2x-3) | | (3x-1)(3x-1)+1=14x-2 | | 44+6y=2(4y+3)+2(2y+7) | | 2t+7=t+36 | | 3^x=35 | | 240x+0.25=180-0.40 | | 2t+7t=t+36 | | 19z+5=-14 | | 14+8=x+x | | 12x+8(x-2)=14 | | -4d+3-9d=-30 | | 3(2x+4)=-36 | | 6x/5=8x-4/3 | | 150-x-2x=12x | | .5q=0.25 | | 44+6y=4(y+3)+2(y+7) | | 3(7k+3)(7k-3)=0 | | (x+4)°+72°=180 | | -3(v+1)+7v=4(v+4)-5 | | 58=t-1 | | 5(x+2)+9(1/3x+5)+9=8x | | 35-5v=-7(-5-6v) | | 2.2-0.5(0.6x-1.8=) | | 2x+4x=2200 | | -12(x+4)=240= | | x/7+x/2=3/2 |