M1+m2+128=180

Simple and best practice solution for M1+m2+128=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for M1+m2+128=180 equation:



1+M2+128=180
We move all terms to the left:
1+M2+128-(180)=0
We add all the numbers together, and all the variables
M^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $

See similar equations:

| 4x-5=39+6 | | 5(4x-7)=5(8x-8) | | 5(4x-7)=5(8x-8 | | 136+x=x-56 | | 5(4-2f)=3–(2f-1) | | (40)(4x)=100 | | 5x-23+7x-1=90 | | 7n+12=3n–8 | | 9x+5=30. | | 3x+2x(5)-19x= | | 22x-18=92 | | 9y+3×=180 | | 4x=46(90) | | 14(2x+1)=25x+5+3x | | k+16=24 | | 4g=–4g−8 | | 27x-20=3x+1 | | 8(y-8)+4(y+8)-35=4y-6 | | 4x-5=27x-20 | | 4x+7.5=(4x+8x+3)*1/2 | | 14(2x+1)=28x+5+3x | | –5z+5z=0 | | 4s−3=4s−2 | | x/9+8=14 | | -1+12x-6x^2=0 | | -9=3a-6 | | x^+11x+29=x+4 | | x/3+x/2+x/4=x+3 | | 35=-2x−15 | | 12^e=1728 | | 1/4(z-25)=2 | | 8/4x-6=4-1/12x |

Equations solver categories