M1+m2=134

Simple and best practice solution for M1+m2=134 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for M1+m2=134 equation:



1+M2=134
We move all terms to the left:
1+M2-(134)=0
We add all the numbers together, and all the variables
M^2-133=0
a = 1; b = 0; c = -133;
Δ = b2-4ac
Δ = 02-4·1·(-133)
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{133}}{2*1}=\frac{0-2\sqrt{133}}{2} =-\frac{2\sqrt{133}}{2} =-\sqrt{133} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{133}}{2*1}=\frac{0+2\sqrt{133}}{2} =\frac{2\sqrt{133}}{2} =\sqrt{133} $

See similar equations:

| 200+100x=1800+150x | | 12-28i+15i-35i^2=0 | | 3m/(1-2m)+3/8=0 | | d=57+4 | | 5/2(x)+1/4=3/4(x)+2 | | 3=g{-4}-53=−4g​−5 | | 2x13=5x-11 | | x–0.35–0.05x=2–1.4x | | 2(x+5)/3=1-3(x-5)/4 | | -5-6v=31 | | C=2 | | Y-2=-1(x-0) | | 5-6v=31 | | -11+t=-40 | | 101/2÷1/4=x | | 3+6c=29 | | 13+6c=2 | | 6x×28=38 | | 6x=2×+32 | | -5x+26=-7x+34 | | 456-345*567+456=x+56-43 | | 4x-33=-8x+63 | | 887*12=56-45+x | | 34/2-45=x | | P(t)=-(t+5)(t-5)(t²+9) | | P(t)=t⁴+16t²+225 | | 20z-10=110 | | 3(n-6)=-27 | | X/3-2y=-3 | | 15x÷=30 | | -8x-25=9x+26 | | 9x+74=5x+42 |

Equations solver categories