M1=40-4xM2=50-8x

Simple and best practice solution for M1=40-4xM2=50-8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for M1=40-4xM2=50-8x equation:



1=40-4M^2=50-8M
We move all terms to the left:
1-(40-4M^2)=0
We get rid of parentheses
4M^2-40+1=0
We add all the numbers together, and all the variables
4M^2-39=0
a = 4; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·4·(-39)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{39}}{2*4}=\frac{0-4\sqrt{39}}{8} =-\frac{4\sqrt{39}}{8} =-\frac{\sqrt{39}}{2} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{39}}{2*4}=\frac{0+4\sqrt{39}}{8} =\frac{4\sqrt{39}}{8} =\frac{\sqrt{39}}{2} $

See similar equations:

| 12-(x+9)=x+11 | | (x+38)(2x-7)=180 | | -5.1+p=-7.1 | | -3x-3+7x=27 | | 2-5x=6-5x | | X+382x-7=180 | | 2-5x=1+x | | -6u+4(u-8)=-24 | | 4m–5(3m+10)=126. | | 22.8+x=-3.8 | | -3x-3x+7x=27 | | 2x-1=7x×44 | | 61.1=9.4x6.5 | | 8x+35=x-63 | | -x+79=98-20 | | 9x+80=x+64 | | 2x=24+ | | −3(41+3)+4(61+1)=k | | x=10+3/4 | | 8x-129/2=2x | | 5x+34=−2(1–7x) | | 57=4y+17 | | 3x+14+2x=29 | | 9x+1–7x–5=-20 | | 15=2u | | MB=4y+10 | | -(6x-5=-6x+13 | | 19=5v-16 | | 14-2(3x+9)=4(2x-7)-1 | | X+0.04x=1833 | | n-7=38 | | 2x^2-8x+6=-42 |

Equations solver categories