N*n=320/n

Simple and best practice solution for N*n=320/n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for N*n=320/n equation:



*N=320/N
We move all terms to the left:
*N-(320/N)=0
Domain of the equation: N)!=0
N!=0/1
N!=0
N∈R
We add all the numbers together, and all the variables
*N-(+320/N)=0
We add all the numbers together, and all the variables
N-(+320/N)=0
We get rid of parentheses
N-320/N=0
We multiply all the terms by the denominator
N*N-320=0
Wy multiply elements
N^2-320=0
a = 1; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·1·(-320)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*1}=\frac{0-16\sqrt{5}}{2} =-\frac{16\sqrt{5}}{2} =-8\sqrt{5} $
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*1}=\frac{0+16\sqrt{5}}{2} =\frac{16\sqrt{5}}{2} =8\sqrt{5} $

See similar equations:

| x+5+93+76+2x=360 | | x-60+x*0,25=0 | | N•n=320/n | | √2x-13=x+7 | | 5(x+4)+x=3(x+2)-2 | | 0=-12/q^2-15+2q | | 3x+8=13−3x | | 1/3×5x=23-1x | | 10x=-33 | | -10x=33 | | 80+5p=0 | | 7=8x-10 | | 4x-5=10-5 | | 2(5r+3)-8= | | 0.50x+0.34(30)=46.5 | | 7x+-3=-4 | | |-2x+1|+5=-14 | | 9n-3=4n+0 | | (X+3)(x-6)=x-39= | | (-4.9x^2)+20x+30=0 | | 7h+7h+3h= | | 6x-2=2x-3 | | x+(x+1)÷2=63 | | -6g2−6g+8=0 | | -6g^2−6g+8=0 | | 2p+5=7p-6 | | 2/3k-(k+1/2)=1/6(k+3) | | 9m=5-8 | | 49r2+28=0 | | 4s-6=3s+9 | | 2(2y-1)=6y+6 | | 3000÷36m=7500 |

Equations solver categories