If it's not what You are looking for type in the equation solver your own equation and let us solve it.
N2+3=13
We move all terms to the left:
N2+3-(13)=0
We add all the numbers together, and all the variables
N^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| -6(3g+15)=18 | | 5v=4=-21 | | 18=9e | | C+21/5=c/2 | | -2x—7x=3+12 | | 43=87−p | | 3x−5=19* | | 28w+63/3=3 | | 1,000,000=0.01*2^x | | -8x+4=16x+40 | | 12=6(n–7) | | 8m=2m-12 | | (4x+188)-6x=(6x+126)-6x | | 7(d+8)=91 | | d-190=250 | | 14z-86+36=11z-9 | | 9-4f=13 | | 6+17u=15+-14u | | (1+7n)=(5) | | 7/2=x/6 | | 5=x+21 | | 4x^2+5=8 | | X/2=x+21/5 | | 3x4=12x2 | | (7x+49)-2x=(2x+94)-2x | | 68+60+x=180 | | 4x^2+5=8x | | y/4+10=-14 | | 2t-5=(-3) | | 10n-2n=2 | | 2/(x+3)+3/(x-4)=2x-2/x^2-x-12 | | -8=-2-3p |