If it's not what You are looking for type in the equation solver your own equation and let us solve it.
N2-25+25+4=15
We move all terms to the left:
N2-25+25+4-(15)=0
We add all the numbers together, and all the variables
N^2-11=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $
| 2x+108=0 | | 1331n=14641 | | 24y-620=y-195/3 | | 82+84/6-4x4=N | | 150+5+75-3x15=N | | 24y-195=y-620/3 | | 4x5=25- | | 428=6x | | n5=32768 | | 10x+4=40x-24 | | 5x+25=50x-33 | | 6(5x-2+12=30 | | x3+15x2+150x-245=0 | | (x+1)/2x=10 | | 7x=51-2 | | x/9+4=-1 | | 5x+1=8x-24 | | 30/x=0.02 | | 0,5^2x+5=1/512 | | x/30=0.02 | | 5/2x+3=22/2 | | 6/2x+4=22/2 | | 6/2x+3=22 | | R2-10r+17=0 | | 6t^2-11t-2=0 | | 2x-(7-5x)-21=0 | | m^-2m-120=0 | | 36x^-121=0 | | k/2=9 | | x-6.16=-17 | | c/3-5=21 | | -34+x=4.5 |