If it's not what You are looking for type in the equation solver your own equation and let us solve it.
N2=83
We move all terms to the left:
N2-(83)=0
We add all the numbers together, and all the variables
N^2-83=0
a = 1; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·1·(-83)
Δ = 332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{332}=\sqrt{4*83}=\sqrt{4}*\sqrt{83}=2\sqrt{83}$$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{83}}{2*1}=\frac{0-2\sqrt{83}}{2} =-\frac{2\sqrt{83}}{2} =-\sqrt{83} $$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{83}}{2*1}=\frac{0+2\sqrt{83}}{2} =\frac{2\sqrt{83}}{2} =\sqrt{83} $
| 1/5y-1/4=1/3y-1/15 | | 7,5*(x+3)=0,75 | | (2+y)*4=-4y | | 4/9+4(x-1)=28/9+1 | | 5.6/x=(5.6+4.2)/6.4 | | 9-5x=2x-24 | | O=a+1/2+a+1/3+a+1/6 | | 5.6=9.8x/6.4 | | -105+133x=-18+46x | | 85+64(4x+27)=180 | | 1=(1)/(x^2+2x)+(x+1)/(x) | | 1=1/x^2+2x+x+1/x | | 7x-6=10x+36 | | -78+66x-21x+20-47+88x=10x-36+18 | | 3x+5=5,-12 | | 3x+5=5x,-12 | | 8x-2=-2x+98 | | (2x-7)^2+3(7x-2x)-180=0 | | 10x-2=10+8x | | 2*(2+x)=6 | | 1,2x+4,4=0,8x-5,1 | | 4h+16=58 | | 38=18x | | x-4.97=7.86 | | 5y-6=7 | | y*3=138 | | 7(5+y)=42 | | 4x/3+5=7 | | 5y-4/3=17 | | 5t^2-10t+25=O | | 8-(2x-12)=8x | | -P+6=2p+15 |