P(X)=(x-1)(x-2)

Simple and best practice solution for P(X)=(x-1)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(X)=(x-1)(x-2) equation:



(P)=(P-1)(P-2)
We move all terms to the left:
(P)-((P-1)(P-2))=0
We multiply parentheses ..
-((+P^2-2P-1P+2))+P=0
We calculate terms in parentheses: -((+P^2-2P-1P+2)), so:
(+P^2-2P-1P+2)
We get rid of parentheses
P^2-2P-1P+2
We add all the numbers together, and all the variables
P^2-3P+2
Back to the equation:
-(P^2-3P+2)
We add all the numbers together, and all the variables
P-(P^2-3P+2)=0
We get rid of parentheses
-P^2+P+3P-2=0
We add all the numbers together, and all the variables
-1P^2+4P-2=0
a = -1; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·(-1)·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{2}}{2*-1}=\frac{-4-2\sqrt{2}}{-2} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{2}}{2*-1}=\frac{-4+2\sqrt{2}}{-2} $

See similar equations:

| 7(3x-5)=28 | | 55+x+58+2x-55+x+54=360 | | 88+x+17+x-23+2x-78=360 | | 0.13y−0.6=0.83y= | | 4x+55=-51-4x | | 25+3b-11=73 | | 57+6x+64+13x+14+6x=360 | | -5.5x+10.5x-20+88=0 | | 25+3b-11=75 | | 1=n÷3-1 | | 2z+25=4z+19 | | z=14z-78 | | 3n*2+12n=0 | | 5=360÷a-1 | | 9^x-30*3^x+81=0 | | 7x+3=-3+2x+2 | | 2m-6=-6 | | y+44=3y-46 | | 2x+3x+7=45 | | 2x^2+6x-5,5=8 | | u=12334444 | | (x+11)+(3x+11)=(5x+8) | | 2/3x=31/6 | | 7x=2-4x^2 | | 2y-49=y | | -2y+4-6y-10=6 | | -3+4=2x+2 | | 5.53=c−5 | | 5h=-22 | | 4^x2+12x=0 | | x=(x-6.1)=415.3 | | 6z+48=54 |

Equations solver categories