P(x)=(5x-1)(2x+2)

Simple and best practice solution for P(x)=(5x-1)(2x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=(5x-1)(2x+2) equation:



(P)=(5P-1)(2P+2)
We move all terms to the left:
(P)-((5P-1)(2P+2))=0
We multiply parentheses ..
-((+10P^2+10P-2P-2))+P=0
We calculate terms in parentheses: -((+10P^2+10P-2P-2)), so:
(+10P^2+10P-2P-2)
We get rid of parentheses
10P^2+10P-2P-2
We add all the numbers together, and all the variables
10P^2+8P-2
Back to the equation:
-(10P^2+8P-2)
We add all the numbers together, and all the variables
P-(10P^2+8P-2)=0
We get rid of parentheses
-10P^2+P-8P+2=0
We add all the numbers together, and all the variables
-10P^2-7P+2=0
a = -10; b = -7; c = +2;
Δ = b2-4ac
Δ = -72-4·(-10)·2
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{129}}{2*-10}=\frac{7-\sqrt{129}}{-20} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{129}}{2*-10}=\frac{7+\sqrt{129}}{-20} $

See similar equations:

| v4−7=−12 | | 8+9u=8u | | r^2+15r+43-r+6= | | 2.1x+100=4.41+10X | | -87=-2v+5(1+5v) | | -3(6a+7)+5a=9-8a | | y=6000(2)^-0.2(3) | | 2(1-7n)=100 | | 7+6b-4-14=b-5+7b | | 8a+5a=7a | | -10−10k=-9k | | n+1/2=3 | | 4x+7=4x-1 | | 2x+30=2x+10+20 | | 6x+9+6x=(2+10)x-4+13 | | 10x+9=10x+12 | | 4x=3(x+4) | | 2x+30=2x+10+10 | | 3(c5)=12 | | 4x+16=8+4x | | 2/3(6x+12)=1/2(4x+8) | | 4x+16=8-4x | | 8(x+1)=7x+x+8 | | 4w-17=51 | | 420=(2r+10) | | |3y-3|=|11-4y| | | (5x-23)=(7x-1) | | 14x-1=13x+8 | | (x-17)=(7x+5) | | 7(-2x-7)+8=-125 | | 3x-19=5x+22 | | h−14=4 |

Equations solver categories