P(x)=-2(x-3)(x-11)

Simple and best practice solution for P(x)=-2(x-3)(x-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=-2(x-3)(x-11) equation:



(P)=-2(P-3)(P-11)
We move all terms to the left:
(P)-(-2(P-3)(P-11))=0
We multiply parentheses ..
-(-2(+P^2-11P-3P+33))+P=0
We calculate terms in parentheses: -(-2(+P^2-11P-3P+33)), so:
-2(+P^2-11P-3P+33)
We multiply parentheses
-2P^2+22P+6P-66
We add all the numbers together, and all the variables
-2P^2+28P-66
Back to the equation:
-(-2P^2+28P-66)
We get rid of parentheses
2P^2-28P+P+66=0
We add all the numbers together, and all the variables
2P^2-27P+66=0
a = 2; b = -27; c = +66;
Δ = b2-4ac
Δ = -272-4·2·66
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{201}}{2*2}=\frac{27-\sqrt{201}}{4} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{201}}{2*2}=\frac{27+\sqrt{201}}{4} $

See similar equations:

| 7-3x-5-8x=5 | | 3c+8=-c-10 | | 34x+34=180 | | 32^(3x)=4^(2x) | | Q^D=50-6p | | 96=12(2x+2) | | 3x+15=5x+24 | | 8x+12=5x+13+2x+17 | | 24x^2-74x-35=0 | | 4000=4(10^x+2) | | -5p+7=9p-7 | | 7c×0=7c | | 1/8x+1/x=1/3 | | 2/85=m/70 | | y/V6-7=4 | | 63x+11=107 | | 8+6k=5k | | 4x+19+3x+11+3x+12=62 | | 6x+15+9x+16+19x+3=180 | | 14x+1=88+5x-7 | | 2x+4x=3+1 | | 3-7v=-5v+7 | | 4x+48x+120=16 | | b÷5/7=3 | | -3c-6=-5c | | 4x+48+120=16 | | 2x-8=3/4x | | x/5+x/7=12/35 | | 8.5=x-5.9 | | -3c-6=5c | | (x+6)^2=8 | | -4h=4-5h |

Equations solver categories