P(x)=510-30x-480/x

Simple and best practice solution for P(x)=510-30x-480/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=510-30x-480/x equation:



(P)=510-30P-480/P
We move all terms to the left:
(P)-(510-30P-480/P)=0
Domain of the equation: P)!=0
P!=0/1
P!=0
P∈R
We add all the numbers together, and all the variables
P-(-30P-480/P+510)=0
We get rid of parentheses
P+30P+480/P-510=0
We multiply all the terms by the denominator
P*P+30P*P-510*P+480=0
We add all the numbers together, and all the variables
-510P+P*P+30P*P+480=0
Wy multiply elements
P^2+30P^2-510P+480=0
We add all the numbers together, and all the variables
31P^2-510P+480=0
a = 31; b = -510; c = +480;
Δ = b2-4ac
Δ = -5102-4·31·480
Δ = 200580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200580}=\sqrt{4*50145}=\sqrt{4}*\sqrt{50145}=2\sqrt{50145}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-510)-2\sqrt{50145}}{2*31}=\frac{510-2\sqrt{50145}}{62} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-510)+2\sqrt{50145}}{2*31}=\frac{510+2\sqrt{50145}}{62} $

See similar equations:

| 5(x-3)=9+3x | | 3x-4=11x–60 | | 10-4x=40-24x | | 0.3{4+x}=4.5 | | 3x-23=2x+35 | | 2(3x+16)=20 | | 2x-23=2x+35 | | 12=3x=7+4x | | -29=-4+5v | | 195=128-v | | 6a^2+5a+6=0 | | 1/3k-7=14 | | 2(-3)-3y-4=7 | | 8x+13=12x+1 | | 160-w=205 | | 3x-8=-x-16 | | y+33=12y | | a+34=7a-20 | | 2b+12=3b | | a+38=20a | | 42-8x=10 | | 3-q÷3=7 | | 3-q/3=7 | | 20=12-4x | | 3x°+120°=180° | | x-3x=7+3 | | 2x+7-5x=-12 | | 7y+2=2y-10 | | -9-11x=6 | | 2/3x-10=-1 | | 8s+(12-7s)=49 | | 7p=4p+6 |

Equations solver categories