P=-100+(0.7q-10)q

Simple and best practice solution for P=-100+(0.7q-10)q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=-100+(0.7q-10)q equation:



=-100+(0.7P-10)P
We move all terms to the left:
-(-100+(0.7P-10)P)=0
We calculate terms in parentheses: -(-100+(0.7P-10)P), so:
-100+(0.7P-10)P
determiningTheFunctionDomain (0.7P-10)P-100
We multiply parentheses
0P^2-10P-100
We add all the numbers together, and all the variables
P^2-10P-100
Back to the equation:
-(P^2-10P-100)
We get rid of parentheses
-P^2+10P+100=0
We add all the numbers together, and all the variables
-1P^2+10P+100=0
a = -1; b = 10; c = +100;
Δ = b2-4ac
Δ = 102-4·(-1)·100
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{5}}{2*-1}=\frac{-10-10\sqrt{5}}{-2} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{5}}{2*-1}=\frac{-10+10\sqrt{5}}{-2} $

See similar equations:

| 5•x=75 | | -7-y=9+7y | | 1/2(12x-20)=22 | | P=-100+(0.7q-6)q | | 4×x+1=85 | | -6z-5=-5z-10 | | 3x+2(x-)=9x+4 | | (6n+4)=8(3+3n) | | -10-r=-6r-10 | | x+25°+3x+15°=150° | | 6+4m=10m | | 2(x+7)+6(x-3)=180 | | y=4(20)+17 | | 2m-6=2m+2 | | 14-16x=8x-34 | | 5x+99=187 | | x+3x+22=90 | | 3x+1.2x+1=11 | | -12+d=3(d+10) | | x=4+2/5 | | 8b-(2b+2)=16 | | 17=3(q-5)+8 | | 5x-x=6x-10 | | 5(5x-7)=-85 | | 2(x+6)+3/4x=-1/2(x+16)-3/4x | | 3n2=27 | | 2.6-x/x=10 | | 140x18=2520 | | 4^2t+18=-6t | | 3(x-5)=45-x | | 27=3(x+7) | | 3^(-x)=120 |

Equations solver categories