P=-100+(0.7q-6)q

Simple and best practice solution for P=-100+(0.7q-6)q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=-100+(0.7q-6)q equation:



=-100+(0.7P-6)P
We move all terms to the left:
-(-100+(0.7P-6)P)=0
We calculate terms in parentheses: -(-100+(0.7P-6)P), so:
-100+(0.7P-6)P
determiningTheFunctionDomain (0.7P-6)P-100
We multiply parentheses
0P^2-6P-100
We add all the numbers together, and all the variables
P^2-6P-100
Back to the equation:
-(P^2-6P-100)
We get rid of parentheses
-P^2+6P+100=0
We add all the numbers together, and all the variables
-1P^2+6P+100=0
a = -1; b = 6; c = +100;
Δ = b2-4ac
Δ = 62-4·(-1)·100
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{109}}{2*-1}=\frac{-6-2\sqrt{109}}{-2} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{109}}{2*-1}=\frac{-6+2\sqrt{109}}{-2} $

See similar equations:

| 4×x+1=85 | | -6z-5=-5z-10 | | 3x+2(x-)=9x+4 | | (6n+4)=8(3+3n) | | -10-r=-6r-10 | | x+25°+3x+15°=150° | | 6+4m=10m | | 2(x+7)+6(x-3)=180 | | y=4(20)+17 | | 2m-6=2m+2 | | 14-16x=8x-34 | | 5x+99=187 | | x+3x+22=90 | | 3x+1.2x+1=11 | | -12+d=3(d+10) | | x=4+2/5 | | 8b-(2b+2)=16 | | 17=3(q-5)+8 | | 5x-x=6x-10 | | 5(5x-7)=-85 | | 2(x+6)+3/4x=-1/2(x+16)-3/4x | | 3n2=27 | | 2.6-x/x=10 | | 140x18=2520 | | 4^2t+18=-6t | | 3(x-5)=45-x | | 27=3(x+7) | | 3^(-x)=120 | | -16=-2(3-5x) | | 5x+6/2=23 | | 5x+6=23/2 | | 39=-3(7+4x) |

Equations solver categories