P=2n2-40n-165

Simple and best practice solution for P=2n2-40n-165 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=2n2-40n-165 equation:



=2P^2-40P-165
We move all terms to the left:
-(2P^2-40P-165)=0
We get rid of parentheses
-2P^2+40P+165=0
a = -2; b = 40; c = +165;
Δ = b2-4ac
Δ = 402-4·(-2)·165
Δ = 2920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2920}=\sqrt{4*730}=\sqrt{4}*\sqrt{730}=2\sqrt{730}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{730}}{2*-2}=\frac{-40-2\sqrt{730}}{-4} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{730}}{2*-2}=\frac{-40+2\sqrt{730}}{-4} $

See similar equations:

| 9(x+1)-(4x-1)=2 | | x-x/3+5x=x-2x | | 3x+15/6=5x+18/8 | | x/5x-2=2/11 | | 8/5x=2/7 | | 22-2x=29 | | 2x-22=29 | | 6(4x+5)+6(4x+3)+5=48x+54 | | 2(6x+3)+2(2x+5)+3=16x+19 | | 4(9)+3y=9 | | 21.5+0.5x=27.5 | | 19(x+1.4)=14(3x+2) | | 378=1/2h(18+24) | | 2(x^2+7)=6 | | 2(x+21)+3(x-4)=5(x+6) | | 3y-7=41-y | | 3(x+6)-3=6(x+2)-6 | | -0.36-0.01x=-0.46 | | -0.36-0.01x=-0.41 | | x=5x+10-3x+24 | | x^-9=8 | | x^-9=9 | | 0.5x-0.3(5)=2.5 | | 4(5x-3)-5(3x+7)=6x-23 | | x^+8=108 | | 5x^+11=1 | | 2/7x=1/4x+3 | | 9(x+5)-(2x-7)=5 | | 5(3x+4)-6(3x-7=23x | | 10x^2-9+6=0 | | 4x+4x-1=48 | | 5+3(7x+4)=6x-13 |

Equations solver categories