P=3x-4+x+3+x2-2+x2-2x+1

Simple and best practice solution for P=3x-4+x+3+x2-2+x2-2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=3x-4+x+3+x2-2+x2-2x+1 equation:



=3P-4+P+3+P2-2+P2-2P+1
We move all terms to the left:
-(3P-4+P+3+P2-2+P2-2P+1)=0
We add all the numbers together, and all the variables
-(+2P+2P^2-4+3-2+1)=0
We get rid of parentheses
-2P^2-2P+4-3+2-1=0
We add all the numbers together, and all the variables
-2P^2-2P+2=0
a = -2; b = -2; c = +2;
Δ = b2-4ac
Δ = -22-4·(-2)·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*-2}=\frac{2-2\sqrt{5}}{-4} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*-2}=\frac{2+2\sqrt{5}}{-4} $

See similar equations:

| (18y+6+12y+1)/2=16y+1 | | 6x(14-3)+8=0 | | 1x+17=19x-23 | | (z+45)+z+55+78+74+z=360 | | .12+c=7 | | r-19.3=-5.6 | | 5(v+3)-10v-10=v5 | | 0.36(x-50)=228 | | 6(2x+1)-2=12x=4 | | 1/2x+18=1/4-6 | | 2*9x-11=16x-12 | | $8.50r=50 | | -3x+1=+9-4x | | 0.5x+70-70=90+70 | | 0.5x+140=20 | | m^2+2m-30=5 | | 8.50r=102 | | -1/2x=4.5 | | $8.50r=$102 | | -½x=4.5 | | 8+6x-10x=16-8 | | 7v=–7+8v | | 4/3x^2-88=20 | | 9s+10=-4s-7s-10 | | 4.8d=1,2 | | 7+7/9j=-42 | | -4.99=5-w | | a^2+35^2=37^2 | | 19=p+(-1) | | 19=p+9-1) | | 2x−2=−18 | | -8-8v=-9v+1 |

Equations solver categories