If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=P(150-1.5P)-20(150-1.5P)-1.500
We move all terms to the left:
-(P(150-1.5P)-20(150-1.5P)-1.500)=0
We add all the numbers together, and all the variables
-(P(-1.5P+150)-20(-1.5P+150)-1.500)=0
We calculate terms in parentheses: -(P(-1.5P+150)-20(-1.5P+150)-1.500), so:We get rid of parentheses
P(-1.5P+150)-20(-1.5P+150)-1.500
We add all the numbers together, and all the variables
P(-1.5P+150)-20(-1.5P+150)-1.5
We multiply parentheses
-1P^2+150P+20P-3000-1.5
We add all the numbers together, and all the variables
-1P^2+170P-3001.5
Back to the equation:
-(-1P^2+170P-3001.5)
1P^2-170P+3001.5=0
We add all the numbers together, and all the variables
P^2-170P+3001.5=0
a = 1; b = -170; c = +3001.5;
Δ = b2-4ac
Δ = -1702-4·1·3001.5
Δ = 16894
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-170)-\sqrt{16894}}{2*1}=\frac{170-\sqrt{16894}}{2} $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-170)+\sqrt{16894}}{2*1}=\frac{170+\sqrt{16894}}{2} $
| 0.07x=152-00.8(2000-x) | | 400x=450 | | 80+(2x+30)=180 | | X+3x=126 | | -5x-34=-2(x+5) | | 3+2x-5x=11 | | -3p+19p+10=-6 | | 3(2+b)=5+3b | | 2x-11=3x+12 | | 5+2x10=D | | -5x+8+3x=20 | | 4x2+5x=2x+2 | | 5/9(x-1/3)=5/12 | | 20n-28=10n+3 | | -5(y+5)=-8y-37 | | 2x+3x+5x=120 | | 4x^-11x-45=0 | | x+.17x=82 | | -5(7x+10)=-365 | | x+0.17x=85 | | 9=0.6x | | x+(x*18/100)=100 | | -2w-34=2(w+3) | | x/4−9=−5 | | x4−9=−5 | | 1.02=1.02x | | -3x+5(x-5)=-31 | | 2.9=x1/32 | | -x^2+21-54=0 | | x/2−1=2 | | 4)2x-5)+8x=4(4x-5) | | 6(a=3)=18=6a |