Prime factorization of 520

Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.

If it's not what You are looking for type in the field below your own integer, and You will get the solution.

Prime factorization of 520:

By prime factorization of 520 we follow 5 simple steps:
1. We write number 520 above a 2-column table
2. We divide 520 by the smallest possible prime factor
3. We write down on the left side of the table the prime factor and next number to factorize on the ride side
4. We continue to factor in this fashion (we deal with odd numbers by trying small prime factors)
5. We continue until we reach 1 on the ride side of the table

520
prime factorsnumber to factorize
2260
2130
265
513
131


Prime factorization of 520 = 1×2×2×2×5×13= $ 1 × 2^3 × 5 × 13 $

 

See similar ones:

| Factors of 999 | | Prime factorization of 422 | | Factors of 316 | | Factors of 158 | | Factors of 358 | | Factors of 714 | | Factors of 2475 | | Prime factorization of 1254 | | Prime factorization of 72810 | | Factors of 72810 | | Prime factorization of 81270 | | Prime factorization of 67865 | | Prime factorization of 65535 | | Prime factorization of 1125 | | Factors of 630 | | Prime factorization of 13131 | | Factors of 3190 | | Prime factorization of 1313 | | Prime factorization of 663 | | Factors of 399 | | Factors of 2380505 | | Factors of 341 | | Prime factorization of 207 | | Factors of 203 | | Prime factorization of 2118 | | Factors of 2118 | | Prime factorization of 9604 | | Factors of 528 | | Prime factorization of 414 | | Factors of 414 | | Prime factorization of 337500 | | Prime factorization of 33750 |

Equations solver categories