R(11)=(x+1)(x-3)

Simple and best practice solution for R(11)=(x+1)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(11)=(x+1)(x-3) equation:



(11)=(R+1)(R-3)
We move all terms to the left:
(11)-((R+1)(R-3))=0
We multiply parentheses ..
-((+R^2-3R+R-3))+11=0
We calculate terms in parentheses: -((+R^2-3R+R-3)), so:
(+R^2-3R+R-3)
We get rid of parentheses
R^2-3R+R-3
We add all the numbers together, and all the variables
R^2-2R-3
Back to the equation:
-(R^2-2R-3)
We get rid of parentheses
-R^2+2R+3+11=0
We add all the numbers together, and all the variables
-1R^2+2R+14=0
a = -1; b = 2; c = +14;
Δ = b2-4ac
Δ = 22-4·(-1)·14
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{15}}{2*-1}=\frac{-2-2\sqrt{15}}{-2} $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{15}}{2*-1}=\frac{-2+2\sqrt{15}}{-2} $

See similar equations:

| 3x+13+8+16x=154 | | 3=12x^2+1.2x+2 | | 8=k+74 | | 6p+5=41 | | 4w^2-7w-8w=3 | | N(10)=35-x | | 6-4a4=7+a | | 7-x=45 | | (7x-15)+(x+23)=180 | | .21P=P(2^-x) | | 1+5k=-3k-16 | | -2+4n=58 | | 116​ =n+97​ | | {q}{4}=10 | | -7p-10=-52 | | -3x=68 | | -3(x+5)=3x(x-1) | | (4x+14)+(2x+52)=360 | | 2(8−x)=8 | | 4b+5=3+3b | | q=40 | | 2•(8−x)=8 | | 3x-2=(6x+4) | | x^2+9=-7x | | 3j=7.2 | | -10k+-25=35 | | -6-5k=-3k-16 | | 18=8u+u | | 7x^2+9=-x | | 0=x2−10x+22 | | 18x+48=3x^2+6x | | x-8=(x/2) |

Equations solver categories