If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(R)=(330+15R)(6-0.25R)
We move all terms to the left:
(R)-((330+15R)(6-0.25R))=0
We add all the numbers together, and all the variables
R-((15R+330)(-0.25R+6))=0
We multiply parentheses ..
-((+0R^2+90R+0R+1980))+R=0
We calculate terms in parentheses: -((+0R^2+90R+0R+1980)), so:We add all the numbers together, and all the variables
(+0R^2+90R+0R+1980)
We get rid of parentheses
0R^2+90R+0R+1980
We add all the numbers together, and all the variables
R^2+91R+1980
Back to the equation:
-(R^2+91R+1980)
R-(R^2+91R+1980)=0
We get rid of parentheses
-R^2+R-91R-1980=0
We add all the numbers together, and all the variables
-1R^2-90R-1980=0
a = -1; b = -90; c = -1980;
Δ = b2-4ac
Δ = -902-4·(-1)·(-1980)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-6\sqrt{5}}{2*-1}=\frac{90-6\sqrt{5}}{-2} $$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+6\sqrt{5}}{2*-1}=\frac{90+6\sqrt{5}}{-2} $
| -7a+6a=21 | | R(x)=(330+15x)(6-0.25) | | 12y=3y+17 | | 3x^2-8x-23=-4x-9 | | 8.5x-2(2x+8)=x | | 3e^2-2=0 | | X+5x=1320 | | y-2y=7 | | 2x±76=13x-16 | | (8w+8)+°(9w-5)°=180 | | (8w+8)°+(9w-5)°=180 | | -(-14)=x | | X/3+y/4=4 | | 4(x-2)=90 | | X²-10x+8=0 | | F(5x)=3x+17 | | 437=23(f−938) | | 25(r+10)=750 | | 500x0.4=F2x0.04 | | (2a-1)/3=1/2 | | (2x-1)/(3)=1/2 | | 23m=483 | | 40=v-34 | | 10x+9-(11+X)=-2(2x+4)-3(2x-2) | | g-20=30 | | v^2-27v=0 | | f+1=41 | | -5x+14x=13x | | 3y=6+3y+6 | | 16=13y-5y | | m–13=–11 | | -17=v/2-7 |