R(x)=(340+4x)(75-3x)

Simple and best practice solution for R(x)=(340+4x)(75-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(x)=(340+4x)(75-3x) equation:



(R)=(340+4R)(75-3R)
We move all terms to the left:
(R)-((340+4R)(75-3R))=0
We add all the numbers together, and all the variables
R-((4R+340)(-3R+75))=0
We multiply parentheses ..
-((-12R^2+300R-1020R+25500))+R=0
We calculate terms in parentheses: -((-12R^2+300R-1020R+25500)), so:
(-12R^2+300R-1020R+25500)
We get rid of parentheses
-12R^2+300R-1020R+25500
We add all the numbers together, and all the variables
-12R^2-720R+25500
Back to the equation:
-(-12R^2-720R+25500)
We get rid of parentheses
12R^2+720R+R-25500=0
We add all the numbers together, and all the variables
12R^2+721R-25500=0
a = 12; b = 721; c = -25500;
Δ = b2-4ac
Δ = 7212-4·12·(-25500)
Δ = 1743841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(721)-\sqrt{1743841}}{2*12}=\frac{-721-\sqrt{1743841}}{24} $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(721)+\sqrt{1743841}}{2*12}=\frac{-721+\sqrt{1743841}}{24} $

See similar equations:

| 46x+42=32 | | 3x²+6x-1x-2=0 | | 14000x=70000 | | 2b^2-6b=4 | | 2(x-3)+4x=126 | | 6x+43=19 | | 26+8x=6x+46 | | 5x+40=5(x+8)+2 | | 6x^2+14x-96=0 | | 3x/15-2=x+1/3 | | k/13=18 | | -4m=-68 | | X+9x+1=-17 | | 8x-729=0 | | (9/5)x+(3/2)=21/6 | | 3x5=12 | | 16=-6+c/3 | | (2x/3)-x=x/6-5/2 | | -20+5f=70 | | u/7=17/3 | | 3x-1÷2=0 | | 16x-5=43 | | 0=3/4a+3 | | 24=-3(4r-4) | | 19=r-1 | | 12+x=120 | | 1/2y-7=13 | | 27/6x=99 | | 2x-20=425 | | 8(t-2)+6t=7(2t+2)-11 | | 0.6(3-2x)+1.2x=0.9 | | 10y+15=-8y+3(3+10) |

Equations solver categories