R=(1,600+50x)(50-x)

Simple and best practice solution for R=(1,600+50x)(50-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R=(1,600+50x)(50-x) equation:



=(1.600+50R)(50-R)
We move all terms to the left:
-((1.600+50R)(50-R))=0
We add all the numbers together, and all the variables
-((50R+1.6)(-1R+50))=0
We multiply parentheses ..
-((-50R^2+2500R-1.6R+80))=0
We calculate terms in parentheses: -((-50R^2+2500R-1.6R+80)), so:
(-50R^2+2500R-1.6R+80)
We get rid of parentheses
-50R^2+2500R-1.6R+80
We add all the numbers together, and all the variables
-50R^2+2498.4R+80
Back to the equation:
-(-50R^2+2498.4R+80)
We get rid of parentheses
50R^2-2498.4R-80=0
a = 50; b = -2498.4; c = -80;
Δ = b2-4ac
Δ = -2498.42-4·50·(-80)
Δ = 6258002.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2498.4)-\sqrt{6258002.56}}{2*50}=\frac{2498.4-\sqrt{6258002.56}}{100} $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2498.4)+\sqrt{6258002.56}}{2*50}=\frac{2498.4+\sqrt{6258002.56}}{100} $

See similar equations:

| 10=5(2b-4) | | 0x+1=0x+4 | | 12x+8=8x+48 | | 15c+c-8=17c-4 | | 8k-34=-2+7(4+4k) | | 4(4-4k)=-10–16k | | r-13-16=4r+19 | | 99(10x)=189 | | 4x-2/5=-2/3x-1/5 | | 2x-13=51 | | 5(y-8)-7y=-24 | | 5|x+4|=30 | | 6(v-3)=6 | | 8(y+7)-2(y-5)=3(y-3) | | n/2-4=-2 | | -86=x-7(x+8) | | -2+10a=-152 | | -7f=2f-50 | | -12q=696 | | 9x+5-2x=-5x-15+x | | -92-12x+8x=24 | | |5x-6|=-1 | | 1=x+4.7/9.7 | | 6+2.5x=5+3.25x | | -166k=20 | | 1+m/4=2 | | 6-7x=6x-9x+12 | | 25x-12=x+12 | | X+.05x=34 | | 5+4a=-35 | | X^2+15x+-324=0 | | 15v-18=-12 |

Equations solver categories